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MethylSPWNet and MethylCapsNet: Biologically Motivated
Organization of DNAm Neural Networks, Inspired by
Capsule Networks
Joshua J. Levy1,2,3✉, Youdinghuan Chen 1,2, Nasim Azizgolshani2, Curtis L. Petersen 2,4, Alexander J. Titus5, Erika L. Moen4,6,
Louis J. Vaickus3, Lucas A. Salas 2,7 and Brock C. Christensen 2,7,8

DNA methylation (DNAm) alterations have been heavily implicated in carcinogenesis and the pathophysiology of diseases through
upstream regulation of gene expression. DNAm deep-learning approaches are able to capture features associated with aging, cell
type, and disease progression, but lack incorporation of prior biological knowledge. Here, we present modular, user-friendly deep-
learning methodology and software, MethylCapsNet and MethylSPWNet, that group CpGs into biologically relevant capsules—such
as gene promoter context, CpG island relationship, or user-defined groupings—and relate them to diagnostic and prognostic
outcomes. We demonstrate these models’ utility on 3,897 individuals in the classification of central nervous system (CNS) tumors.
MethylCapsNet and MethylSPWNet provide an opportunity to increase DNAm deep-learning analyses’ interpretability by enabling a
flexible organization of DNAm data into biologically relevant capsules.
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INTRODUCTION
DNA methylation (DNAm) is a key epigenetic regulator of gene
expression in health and disease states, processes of aging and
cellular differentiation/stemness, and response to environmental
exposures1–3. DNAm of cytosine in the context of
cytosine–guanine dinucleotide (CpG) sites can be measured with
standardized genome-scale oligonucleotide bead arrays at hun-
dreds of thousands of sites4,5. Though a CpG is either
unmethylated or methylated, fluorescence signal intensities from
array measures of bulk biospecimen DNA are used to derive a
beta-value measure that approximates the proportion of methy-
lated DNA copies. Gene promoter CpG island methylation is
associated with repression of transcription, whereas unmethylated
CpG islands are permissive to gene transcription. Alterations to
DNAm have a well-established role in carcinogenesis and tumor
progression, including inactivation of tumor suppressor genes,
aberrant oncogene expression, and loss of repression of repetitive
element sequences that contribute to genomic instability6,7.
The World Health Organization Central Nervous System (CNS)

tumor classification includes over 38 tumor types defined by
histopathological features8. Most of the 38 can be grouped into
the broader glioma, ependymoma, and embryonal tumor types.
Within those three categorizations, over 80 further delineations
are specified by molecular subtyping. DNAm alterations have
been heavily implicated in the development and prognosis of CNS
tumors. For instance, epigenetic silencing of MGMT is associated
with an improved response to chemotherapy in glioblastoma
patients through the deactivation of crucial DNA repair mechan-
isms9. IDH mutations are associated with improved survival in
glioma patients through subsequent global hypermethylation of

CpG island promoters, known as induction of the CpG island
methylator phenotype (CIMP)10–13. Other examples include
hypermethylation of Wnt and Shh pathways in medulloblastoma
patients14. The success of differential methylation analyses in
characterizing CNS tumors has recently led to the development of
DNAm classifiers of brain tumors as companion diagnostic tools to
understand and correctly diagnose challenging histologic cases
and for the selection of targeted therapies8.
While the development of this methylation-based brain-tumor

machine-learning classifier has been heralded as an improvement,
existing diagnostic framework clinically applicable classifiers use
only a small subset of measured CpGs (e.g., 10,000)15. Incorporat-
ing additional CpG predictors may allow for the resolution of
tumor classes otherwise not identified and help understand
relationships with outcomes16. This problem may be better
approached using machine-learning analyses by merit of their
prohibitive dimensionality. Deep-learning algorithms are a sub-
class of machine-learning approaches that are based on the use of
artificial neural networks (ANN)17–19. Multilayer perceptrons (MLP)
represent a subclass of neural networks that treat the input data
as a one-dimensional vector and then pass the information from
one set of nodes to a subsequent set of nodes through fully
connected layers of weights/parameters. The information at the
subsequent layer of nodes is transformed using nonlinear
transforms/activations/link functions. These types of analyses are
common for deep-learning analyses of DNAm data, where the
input data are a list of beta values for each subject20.
DNAm deep-learning frameworks, e.g., MethylNet, can accu-

rately characterize tissue, disease states, and infer subject age and
cell-type proportions through unsupervised embedding,
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generation, classification, and regression tasks20–24. They also
attempt to ascribe important methylated loci using model
interpretability frameworks such as SHAP25 or LIME26. While the
inclusion of more CpGs presents an opportunity to expand the
space of biologically testable hypotheses20, statistical challenges
(e.g., multicollinearity) with interpretations and generation of
associations with pathways remain understudied27.
Multicollinearity, the unusually high correlation between

features, can be addressed with careful feature selection or
grouping1,28. Feature-selection methods and statistical learning
methods, such as sparse Group LASSO and network regularization,
have identified important CpGs in highly complex data29–33. More
recent work has called for a greater understanding of
DNAm–DNAm interactions’ implications through the incorpora-
tion of Gaussian graphical models, canonical correlation analysis,
and module discovery through weighted gene comethylation
networks34–50. There is growing support for the use of novel deep-
learning methods to aggregate, group, and select CpGs by their
local context (e.g., genes) to connect and interpret the data with
clinical outcomes51–53. Incorporation of prior biological knowledge
improves the transparency and interpretability of the modeling
approach and reduces noise while increasing the signal by
meaningfully pruning redundant relationships between
predictors54.
Capsule networks have served as inspiration for methods that

group CpGs to harness their statistical interactions and relate
predictors’ groupings to clinical and biological outcomes27.
Capsule networks explicitly model the relationships between
constituent parts/groups of predictors, or capsules, through
parameterizing pose matrices (unitary transformations) and then
hierarchically associate each of these parts independently to
higher-order targets of interest. While capsule networks are
primarily featured in the computer vision domain, evolving
methods within different biomedical specialties often utilize
grouped organization of predictors in the neural network
design55.
Here we provide a deep-learning framework for methylation

data that draws inspiration from capsule networks. We investi-
gated the organization of CpG features into DNAm capsules,
which represent local contexts that can be related to one another.

MethylSPWNet and MethylCapsNet organize sets of CpGs into a
series of capsules defined by higher-order genomic contexts and
performs classification tasks (Fig. 1A, B). To bring additional
interpretability to existing deep-learning approaches while
capturing hierarchical association networks, we propose and
explore MethylSPWNet (Sparse Pathway Network) and MethylCaps-
Net as deep-learning analogs of traditional enrichment
approaches, both of which serve to highlight pertinent disease-
related regulatory contexts. We provide recommendations for
developing these capsule and network-deriving models and
provide open-source software for training these models. The
MethylCapsNet framework proposes to expand the broad utility of
these tools by allowing end users to construct their unique
capsules that represent an array of biologically plausible contexts
that further explain their target of interest.

RESULTS
To illustrate the potential utility of capsule-inspired neural network
approaches, we revisited the Capper et al.8 dataset used to train a
model that differentiates CNS tumors56. CNS tumor histology is
largely characterized by the presence or absence of morphologi-
cally distinct cells of origin, including neuronal, astrocytic,
microglial, oligodendrocytic, and Schwann cells. We aimed to
predict the 38 histological subtypes of CNS tumors (39 classes,
including controls) as a test case for the capsule-inspired neural
network approaches. While distinct cell types may characterize
these histological subtypes, it was not our aim to classify these cell
types through this modeling approach, as methods for brain cell-
type estimation using DNAm data are still under development. We
compare the MethylCapsNet and MethylSPWNet frameworks for
capsule organization with the existing MethylNet framework
(which does not account for capsule-organized information20)
and a Random Forest model fit on 10k important CpGs derived
using a previously established method (Random Forest 10k).
Additionally, we provide a Random Forest model on the capsule-
organized information extracted from MethylSPWNet (Random
Forest Capsules). Additional details of modeling approaches, fitting
procedures, and capsule selection are in the “Methods” section.

Fig. 1 Description of modeling approaches. A MethylCapsNet: separate MLPs are utilized to form capsule level embeddings from beta values
of CpG groupings, which are then associated with outcome targets of interest through dynamic routing of information; these embeddings
may be studied to propose networks based on comethylation on the individual level. B MethylSPWNet aggregates the beta values of groups of
CpGs through one locally connected layer; nodes of the resulting layer represent biologically meaningful units that are passed through an
MLP for final prediction; group L1 penalties are applied to prune genes/capsules potentially unrelated to the outcome; red colors indicate
beta values for CpGs, which serve as input to the algorithm.
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Capsule generation for CNS tumor prediction
Capsules may be supplied to the neural network approaches in
the form of annotations and/or gene sets from MSigDB and GSEA:
(1) genes, (2) sites upstream/downstream of the gene, (3) the
following Illumina methylation array annotations—UCSC_RefGen-
e_Name, UCSC_RefGene_Accession, UCSC_RefGene_Group,
UCSC_CpG_Islands_Name, Relation_to_UCSC_CpG_Island, Phan-
tom, DMR, Enhancer, HMM_Island, Regulatory_Feature_Name,
Regulatory_Feature_Group, and DHS—and (4) the following GSEA
gene sets: C5.BP, C6, C1, H, C3.MIR, C2.CGP, C4.CM, C5.CC, C3.TFT,
C5.MF, C7, C2.CP, and C4.CGN. Importantly, users can also input
custom capsules into the pipeline through a dictionary that maps
CpG to a context name of choice. Finally, capsule generation has
been integrated with BedTools57 (genomic_binned selection),
which can break up the entire hg19 genome into overlapping
windows of fixed width. CpGs in these windows will belong to
these capsules. We utilized gene capsules for the primary
classification study, though alternative methods for capsule
formation are explored in the section “Exploration of alternative
capsule formations and cancer subtypes.”

Classification study
We trained each of the modeling approaches to differentiate 38
histological subtypes of CNS tumors and compared their
classification performance via a 1000-iteration nonparametric
bootstrap of F1 scores over the test set, which balances sensitivity
and specificity and reduces the bias in output. Our results indicate
that MethylNet, MethylSPWNet, and MethylCapsNet can achieve
very similar high performance on a common data set (Table 1).
The neural network approaches achieved marginally better
performance than the Random Forest approaches. A breakdown
of classification scores for the capsule-inspired models has been
included in the supplementary material (Supplementary Table 1).
Since all three neural network approaches offer similar perfor-
mance on classifying brain tumors, we next sought to uncover
overlap or complementary insights provided by each modeling
approach based on their data organization. The high predictive
accuracy of both capsule approaches provided grounds for
exploring the factors related to its decision-making process for
increased transparency and validation of our approach.

Clustering gene-level brain cancer embeddings
Until this point, our unit of analysis has been individual CpGs.
Summarizing gene-level methylation using median or mean
methylation is generally not appropriate. The relationship
between methylation state and gene expression can vary,
depending on the genomic context (e.g., promoter and gene
body). However, while training MethylSPWNet to predict tumor
histological subtype, the model learns to generate gene-level
summaries of methylation by updating the weight of each CpG
when aggregating beta values of CpGs on the gene-level (see
Methods “Description of MethylSPWNet”). This gene-level aggre-
gation can transform a design matrix of samples by CpGs into

samples by genes. Gene-level embeddings correlated with
outcome (here tumor histological subtype), can then be inter-
rogated for their relationship with known pathways and gene
networks. To visualize gene-level embeddings, we generated
cluster heatmaps, where rows constitute observations and
columns comprise genes, showing plots of the top 2000 variable
genes from neural network gene-level embeddings (Supplemen-
tary Figs. 1-2).
To assess the representation capacity of MethylNet, Methyl-

CapsNet, and MethylSPWNet embeddings, we clustered embed-
dings with histologic tumor subtype, cell of origin, and histological
subtype with the molecular subclass (Supplementary Table 2).
Preliminary clustering of the observations demonstrates, for
instance, the inability to differentiate IDH mutant subtypes of
glioma when defined by median methylation versus the neural
network parameterization. There is observed concordance
between hierarchical clustering in this embedding space and
the brain cancer subtypes. This concordance is defined by their
molecular subtypes, the original histological subtypes that the
model was trained on, or higher-order cells of origin (e.g.,
mesenchymal, ependymal, and neuroglial origin). MethylSPWNet
had the highest degree of concordance with histological and
molecular subtypes within the gene-level embedding space58 (V-
Measure 0.72 ± 0.0059; Supplementary Table 2). The ability to
recapitulate relevant histological subtypes of CNS tumors through
the embeddings alone is further corroborated by embedding
plots58. In these, MethylCapsNet appears to generate the best
separation and differentiation of subtypes (Silhouette Score:
0.52 ± 0.0048), followed by MethylNet (Silhouette Score: 0.25 ±
0.01), and MethylSPWNet (Silhouette Score: 0.1 ± 0.0087), esti-
mated using a 1000-sample nonparametric bootstrap. Since these
three approaches were trained to recognize histological subtypes,
the signal of the cell of cancer origin and molecular subtypes were
less well captured.

Gene-level and modularity enrichment analyses
Next, we aimed to evaluate the utility of the group-regularized
deep-learning approach for capsule-organized summaries of
DNAm on the gene level for pathways and gene network
analyses. We performed a preliminary analysis of pathway and
module detection based on the extraction of hypervariable genes
across the neural network embeddings and Louvain clustering of
networks of genes based on the pairwise correlation between the
genes. Further description of the methods and results is provided
in the supplementary material (Supplementary Table 3; Supple-
mentary Figs. 3, 4).
A description and flowchart showing an overview of methods

for pathways and gene network analysis downstream from
MethylSPWNet can be found in the Methods section “Description
of Potential Downstream Analyses.” We focused our presentation
of results on three specific CNS tumor subtypes: glioblastoma
(GBM), low-grade glioma (LGG), and medulloblastoma (MB). Gene-
level embeddings (gene by sample) and pathways and gene
network analysis results (derived from those embeddings) are

Table 1. Classification results for random forest approaches, MethylNet, MethylSPWNet, and MethylCapsNeta.

Approach Accuracy ± SE Recall ± SE Precision ± SE F1-Score ± SE

Random forest 10 k 0.96 ± 0.007 0.98 ± 0.012 0.93 ± 0.013 0.95 ± 0.012

Random forest capsules 0.94 ± 0.0087 0.97 ± 0.016 0.91 ± 0.017 0.93 ± 0.016

MethylNet 0.97 ± 0.0061 0.99 ± 0.0099 0.96 ± 0.011 0.97 ± 0.011

MethylSPWNet 0.98 ± 0.0049 0.96 ± 0.0088 0.96 ± 0.0085 0.96 ± 0.0089

MethylCapsNet 0.98 ± 0.0044 0.98 ± 0.012 0.98 ± 0.01 0.98 ± 0.011

aAll scores are reported as macro-measures across all subtypes; 95% confidence intervals estimated using 1000-sample nonparametric bootstrap.
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shown in Figs. 2, 3, and 4, respectively. The results on pathways
and gene network analyses for these three CNS tumor subtypes
(GBM, LGG, and MB) are provided in Supplementary data files 1–3.
A description of the supplementary data files may be found in the
supplementary materials (section “Description of Supplementary
Data”).

Subtype-specific pathways discovery
Using the gene-level MethylSPWNet embedding values, we sought
to calculate differentially embedded genes between disease and
controls (empirical Bayes) and determine the associations of these
genes with some of their correspondent pathways (see Methods
“Description of potential downstream analyses”). A visualization of
pathway networks and output of gene-subtype associations and
pathway enrichment statistics are provided in Fig. 3. The empirical
Bayes results of the differential embedding analyses for each
subtype are provided as Supplementary Data Files.
Our analysis of the selected three CNS tumor subtypes (GBM,

LGG, and MB) found that many top differential genes have been
implicated for these subtypes in prior literature. For instance, TACC
and FGFBP2 (Fig. 3B) are differentially embedded between GBM
and controls and have been implicated with a tumorigenic gene
fusion event (TACC-FGFR359–61). RASGRF2 (Fig. 3B) has been linked
to congenital GBM62. LGI2 and NPY5R (Fig. 3B) have both been
related to changes in Sox2 expression63, which promotes cellular
plasticity in GBM. An interesting associated pathway for GBM was
type 1 diabetes mellitus (Fig. 3A and B), an autoimmune disease,
of which its spurious association could be related to found
associations with several immune-evading markers. For LGG, TLK1
(Fig. 3D), a serine–threonine kinase associated with replication,
focal adhesion, and cell cycle, has previously been implicated in
gliomas64. Similarly, low ELL2 expression (Fig. 3D), regulated by
microRNA (miRNA)-mediated gene silencing, was reported to be a
marker for poorer survival in GBM patients65. GNL1 (Fig. 3D) was
found in our analysis to be associated with LGG and has been
identified as being related to cell proliferation, given its role in the
phosphorylation of Rb66. We also found associations with the
opioid-signaling pathway and G-alpha (i) signaling events67, and
the tyrosine kinase receptor pathway VEGFR (vascular endothelial
growth factor receptor) and downstream signaling pathway ERK
(Fig. 3C and D), largely involved with proliferation and angiogen-
esis68. Regarding MB, as examples, we uncovered NRBP2 (nuclear
receptor binding protein 2; Fig. 3F), which had been shown to be

downregulated in MB69, and SOX14 (Fig. 3F), part of the SOX family
which largely determines cell fate and thus heavily implicated
across many CNS tumors70. Additionally, pathways such as muscle
contraction (Fig. 3E and F) have been associated with specific
molecular subtypes of MB14,71.

Grouped-subtype pathways discovery
Additionally, we investigated associations uncovered by grouping
together a few select disease subtypes. We would expect, at
minimum, differences between these subtypes and healthy
controls to be related to pathways that are specialized to those
larger histological groupings. First, we compared melanoma-
related CNS tumors (MELAN/MELCYT) to controls by performing
enrichment analyses of the top 40 differentially embedded genes,
as defined by the ranked p-values. As a few examples of
potentially enriched gene sets across multiple databases after
Bonferroni adjustment, we found potential enrichment for MITF
transcription factor targets (TRRUST; p= 0.06) and neural crest
differentiation (Wikipathways; p= 0.07), BMP signaling (GO Biolo-
gical Processes; p= 0.03), and IL23-mediated signaling (NCI-Cancer;
p=0.05). Of interest from the ependymal tumors (EPN/SUBEPN)
was that the top 40 genes had demonstrated an overlap with
genes related to the spinal cord (Human Gene Atlas; p=0.03).

Derivation of weighted gene co-embedding networks
To investigate the gene-level embeddings for each of the 38 brain
cancer subtypes (paired to normal controls), we derived disease-
specific modules of genes using the Weighted Gene Correlation
Network Analysis (WGCNA) R package (see Methods “Description
of potential downstream analyses”)48.
We derived 606 modules of genes across the 38 subtypes (37

networks were derived, one subtype was omitted for low sample
count), 297 of which were significantly associated with subtype (all
P-values < 0.05). We have included as Supplementary Data Files
the module membership of each of the genes, module expression
across the samples for the three example subtypes (GBM, LGG,
and MB), hub genes for each module (genes located most
centrally in each subnetwork), and statistics that relate each
module to the subtype. The connectivity of individual genes from
the generated WGCNA modules for GBM, LGG, and MB subtypes is
shown in Fig. 4. Tables of top hub genes from selected modules
strongly associated with each subtype are shown.

Fig. 2 Clustermap of gene-level embeddings for 2000 most variable genes in. A GBM, B LGG, and C MB. The left color track indicates the
presence of the subtype; yellow indicates the presence of controls; green, purple, and pink indicate the presence of the GBM, LGG, and MB
subtypes, respectively; columns have been standardized to highlight trends; in the heatmap, red indicates high MethylSPWNet embedding
values, while blue indicates low embedding values.
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Some of the WGCNA modules’ hub genes were found to be
correspondent with prior knowledge about their respective
subtypes. In GBM, RASGRF4 (blue module; Fig. 4A and B) was
previously featured in Fig. 3B. The silencing of MGMT (green
module; Fig. 4A and B) plays a significant role in the progression of
GBM through inactivation of its DNA repair mechanisms9. MIR33B
(brown module; Fig. 4A and B) is also related to GBM progression
by regulating cell proliferation, invasion, migration, and MYC
signaling72,73. Finally, the role of platelet factors (PF4; blue module)
and CpG island hypermethylation (homeobox gene BARHL2;
turquoise module) has previously been implicated with
GBM74,75. Examples of hub genes in LGG include NRP1 (black

module; Fig. 4D)76, PTPRZ1 (pink module; Fig. 4D)77, and COL6A3
(green module; Fig. 4D). NRP1 has been shown to be related to
poor prognosis in gliomas and signals through microglia/
macrophages. PTPRZ1 has previously been related to malignant
growth in GBM. Finally, COL6A3 is a member of genes serving to
form the tumor vasculature. Finally, of interest in MB were SOX 14
and SOX17 (green module, Fig. 4F)70, CD4 (green–yellow module,
Fig. 4F), SLIT3 and GFPT2 (black module, Fig. 4F), and SYNPO (blue
module, Fig. 4F). CD4 is a gene that codes for the membrane
glycoprotein of the CD4 T cell, where its characterization could be
corroborated by the immune-infiltration patterns of the stroma for
MB. SOX14 and SOX17 are pertinent for cell-fate lineage. SLIT3 is a

Differential Embedding

Pathway Enrichment

Differential Embedding

Pathway Enrichment

Differential Embedding

Pathway Enrichment

A B

C D

E F

Fig. 3 Example output from pathway enrichment analyses for. A, B GBM-control embeddings, C, D LGG-control embeddings, and E, F MB-
control embeddings; left-side plots: correspond to summaries of GO/KEGG/Reactome enrichments using EnrichmentMap in Cytoscape,
plotted via RCy3; each small node corresponds to a pathway; node; and text size proportional to the number of overlapping genes after
differential gene-level embedding analysis; edge between nodes corresponds to shared genes; large ellipses correspond to found clusters
using Markov chain clustering, three words extracted to annotate cluster using a word cloud algorithm; right-side plots: example output of
differential embedding (limma) and pathway enrichment analyses (g:Profiler) on embeddings; top five genes and select pathways listed of the
many uncovered in each analysis.
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gene characterized by axon guidance and consequently tumor
growth, migration, and angiogenesis. Interestingly, GFPT2 (amino
acid metabolism), implicated with higher expression and lower
GBM survival78. SYNPO, central to the black module of MB, was
also central to the blue module of GBM.

Enrichment of neural network CpGs for gene and island
contexts
As Weighted Gene Correlation Network Analysis (WGCNA)
identifies significant associations with known pathways and novel
gene–gene comethylation networks, we sought to investigate the
CpG-specific parameters that corresponded to producing the
embeddings to understand better why the neural network
decided to upweight some CpGs, but not others. To elucidate

the genomic contexts that MethylSPWNet found to be important,
we explored the CpG island context and spatial relationship to the
transcriptional start site (TSS) (Methods section “CpG island/gene
context analysis”). CpG islands (CGI) are CpG-dense regions.
Approximately 60% of gene promoters contain CpG islands79. CpG
shores immediately flank the CGIs by up to 2 kb, shelves flank the
shores by an additional 2 kb, as regional CpG density decreases.
Variables for the spatial relationship to the TSS include TSS1500
and TSS200, within 1500 bp and 200 bp of the TSS, respectively.
Additional TSS variables are the 5′UTR immediately downstream
of the TSS, the first exon, gene body, and 3′UTR.
Of note, we found that CpGs with positive weights (rank-

ordered) were depleted for promoter island regions (defined as
having TSS1500/TSS200 annotation and not open sea) (OR= 0.69;
p= 0.04) as compared with sites not included in promoter-island

A B

C D

E F

Fig. 4 Example output from WGCNA analyses for. A, B GBM-control embeddings; lack of connectivity between the blue/black modules and
the other models suggests lack of functional relationship; C, D LGG-control embeddings; E, F MB-control embeddings; left-side plots:
summarized gene–gene networks using the MAPPER algorithm; nodes indicate genes or dense grouping of genes, colored by discovered
module via WGCNA; edges indicate comethylation; right-side plots: example output from WGCNA analysis; the subset of gene–gene modules;
p-value indicates whether significantly associated with tumor subtype; correlation value indicates directionality and strength of this
relationship; select hub genes indicate genes with the highest centrality in each subnetwork/module.
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regions (OR= 1.45; p= 0.04). However, when limiting the set of
CpGs to only promoter regions (i.e., TSS1500/TSS200), we noted
that positive-weight CpGs were enriched for island context (i.e.,
not in an open-sea region) (OR= 1.21; p= 0.03), while negative-
weight CpGs were depleted for the CGI context (OR= 0.89; p=
0.02). Furthermore, both the positive and negative weights of
intragenic CpGs were depleted for association with the corre-
spondent methylated promoters (as compared with unmethylated
promoters) for their respective genes (positive weight OR= 0.54,
p < 0.01; negative weight OR= 0.44, p < 0.01). We have included
tables for the relationship between CpG weight and indepen-
dently considered contexts in the Supplementary Materials
(Supplementary Table 4; Supplementary Fig. 4).

MethylCapsNet module enrichment
From the embedding module discovery analysis and further
contextualization of the neural network CpG weights, we observed
that information encoded in MethylSPWNet corresponds to key
pathways associated with various CNS tumors and important
genomic contexts. MethylCapsNet offers the ability to infer more
granular relationships between capsules on the individual sample
level when we can reduce the number of parameters specified.
The primary capability and emphasis of the capsule-inspired
network approach is to compare capsules to each other and
directly relate them to particular outcomes of interest via the
dynamic construction of a bipartite network (gene-subtype
relationships) as part of the training and prediction process. For
the MethylCapsNet analysis, we preselected a subset of genes
previously shown to be implicated in various types of brain cancer
(see “Selection of capsules for MethylCapsNet and MethylSPWNet”

in Methods). As such, we believe it would not be appropriate to
test for enrichment of these genes due to the preselection
procedure that introduces a bias. Instead, we derived modules of
genes that the neural network deemed to have a coordinated
DNAm response in elucidating particular subtypes. Our modularity
analysis projects the estimated bipartite graph (gene subtype)
across samples into a univariate graph (gene–gene), then clusters
the graph using Louvain modularity to yield four modules of
genes (green, red, blue, and yellow) (Fig. 5).
Here, we offered an example of the kinds of inferences that can

be made from the resultant unipartite network and subsequent
clustering. For instance, the yellow module implicates relation-
ships between WNT3A and EGFR, heavily implicated in Igf and Wnt
signaling. The red module features the relationship between FRZ
and APC, both of which are heavily involved in WNT signaling (APC
forms the complex to inhibit the accumulation of β-catenin, while
WNT binding to frizzled family receptors may degrade this
inhibition and permit cell proliferation80). Of the green module,
IDH3G and NPR3 (linked to energy metabolism, gene fusion, and
chromatin remodeling) were related to both LRDD (proapoptotic
MAPK pathway) and WIF1 (both previously implicated WNT
signaling suppressors) from the yellow module. KIAA1549, related
to astrocytomas and fused to BRAF for its progression to
oncogenesis, was implicated with WNT1 in the blue module81.
Insulin-like growth factor binding protein 2 (IGFB2, glioma
oncogene) of the red module appeared to be negatively
correlated with many of the genes across the yellow and green
modules82. TP53 (which lacked consequential methylation pat-
terns) and MYC83, MGMT, and TERT share relationships with each
other but not with the other modules, perhaps highlighting how
ubiquitous these somatic alterations are for oncogenesis.

Fig. 5 MethylCapsNet-derived gene network. Clustermap of weighted bipartite network projection of select gene capsules’ relationship to
various CNS tumors using the MethylCapsNet modeling approach; rows and columns are genes, row colors denote modules (green, red, blue,
and yellow) of genes found using Louvain modularity; values in matrix denote Pearson’s correlation between genes.
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Despite having highlighted potentially interesting relationships,
we acknowledge that there will be a future opportunity to
increase the search space of possible relationships between genes
and their coordinated response for bringing about subtypes of
brain cancer. In the Supplementary Material, we provide the
routing matrix that was used to align each gene to a
correspondent CNS subtype, which is the predicted gene-
subtype bipartite network averaged across individuals (Supple-
mentary Figure 5). We have also provided a locally deployable
web application that allows the user to interrogate their
uncovered capsules and form networks on the individual level
and aggregated across patient subgroups or disease subtypes
using gene-capsule-specific embeddings (Supplementary Figure
6). For instance, in our supplemental material, we demonstrate
how the MethylCaps web application can be used to derive
individual networks for LGG and GBM, identifying ANO9 and EGFR,
respectively, as implicated in these conditions (Supplementary
Figures 7-8). These genes and their associated pathways have
been heavily implicated in tumorigenesis and gliomas84,85.

Exploration of alternative capsule formations and cancer
subtypes
In this section, we briefly present results from a few of many
alternative means of forming capsules. Particularly, we consider
the following scenarios for CNS tumor classification: (1) Methyl-
CapsNet is fit when (a) only half the genes are retained from the
original list (selected randomly) and (b) none of the genes are
retained and instead randomly sampled from all genes and (2)
MethylCapsNet is fit using binned genomics regions, utilizing CpGs
encapsulated in 1-Mb bins. In addition to these analyses, we also
explore an integrated breast cancer dataset utilized for PAM50
molecular classification20,86,87 using a few different capsule
configurations: (1) MethylCapsNet is fit using a curated list of
genes, (2) MethylCapsNet is fit using binned genomics regions,
utilizing CpGs encapsulated in 700 kb bins, and (3) MethylSPWNet
is fit using capsules organized by CpG island promoters, formed
by intersecting CpG island with gene promoter annotations from
the Illumina 450k database. A complete set of results can be found
in the supplementary material (Supplementary Tables 5-6;
Supplementary Fig. 9).

DISCUSSION
Recent reviews and initial explorations discussed the potential
utility of capsule-inspired networks to relate biologically organized
capsules to each other and known disease outcomes27,88–90. In this
work, we set out to perform a preliminary evaluation that shows
the feasibility and suitability of DNA methylation capsules for deep
learning analyses as a means to organize CpG information to
higher-order contexts to improve prediction and transparency
while uncovering instances of coordinated gene-level methylation
patterns. In our analyses, we compared several state-of-the-art
predictive modeling methods for DNA methylation classification
of brain tumors. We demonstrated that capsule-based deep-
learning approaches could achieve performance on par with
existing deep-learning models and prove better than existing
traditional machine-learning frameworks for analyzing DNA
methylation data. Our work demonstrated the potential for new
insights compared with other existing methylation-based tumor
classification schemes currently used, which are often based on a
small subset of CpGs, and lack built-in interpretation of the loci
selected8,91. We demonstrated the efficacy of increasing the use of
the available CpGs on the Illumina 450k Array, ultimately using
200,000 loci before subsetting by context.
DNA methylation capsules focused on the gene level can

disentangle important CpGs that might otherwise be down-
weighted in a feature-by-feature deep-learning unsupervised or

supervised learning approach. These CpGs demonstrated sub-
stantial overlap with genes known to be related to tumorigenesis
in the brain, such as NOTCH1, PTEN, and GNAS. This is consistent
with previous studies that demonstrated mutations common in
brain tumors, such as IDH1, are correlated with disruptions in
methylation10,92–97.
The context-specific CpG weight enrichment analyses suggest

that within promoter regions, island context is important for
differentiating different CNS tumor subtypes, but taken as a
whole, regions outside of CpG promoter islands are important for
capturing this heterogeneity. Furthermore, outside of the promo-
ter context (supposedly regions that better capture tumor
heterogeneity), the ability of intragenic CpGs to distinguish tumor
subtypes is still dependent on the promoter methylation status of
the respective gene. Clustering of CpGs with the highest weights
at CpG islands, shores, gene bodies, and transcription start sites
will help us understand where the most diagnostically relevant
sites are in the genome, but demands additional investigation.
We also presented a few examples of the potential downstream

applications of capsule-based approaches. In particular, our
framework demonstrated the ability to relate derived gene-level
measures of MethylSPWNet to known disease pathways via
differential methylation analysis of the gene-level embeddings
and gene–gene comethylation networks via WGCNA. Additionally,
we provided a preliminary interpretation of bipartite (gene
subtype) and unipartite (gene–gene) networks, which can be
derived by MethylCapsNet web framework. Finally, we explored
alternative means from which to form capsules. We expected the
curation of genes to lead to more accurate models. Contrary to
our initial hypothesis, for CNS classification, random capsules’
selection appeared to still produce a highly accurate model. These
results suggest either the potential to uncover novel associations
between genes and subtype or that these genes may be
comethylated with other genes that have well-established
relationships. The binned genomics, fit using MethylCapsNet for
classification tasks in brain and breast, were similar to the leading
methods. The island promoter capsules slightly underperformed,
suggesting that these capsules’ selection alone does not contain
enough information to distinguish PAM50 molecular subtypes.
There are a few limitations to this work, presenting room for

future improvements in the analytical method. First, the included
CpG loci selection is biased on limited sites available from the
Illumina Array platform. At present, the utilization of an Illumina
methylation array platform is more tractable due to lower
technology costs and expertize required98 than whole genome
bisulfite sequencing (WGBS) that requires substantial sequencing
depth on the order of 100x for comparable precision99.
Second, a reduced set of genes were fit using the capsule-

inspired network. It remains challenging to run MethylCapsNet at
scale due to the heavy computational demand and the large
number of free parameters in its current formulation. Since
MethylCapsNet can only analyze approximately one-thousand
capsules at a time, the capsule-selection step is critical to the
method’s successful application. This parameter space should be
reduced by finding some marriage between the scalability
enabled by MethylSPWNet and perhaps greater transparency
offered by MethylCapsNet. Presently, we advise end users to utilize
MethylSPWNet when the number of contexts under evaluation is
large (≥1000 capsules), or if the number of CpGs per gene is small,
and to utilize MethylCapsNet when the number of contexts under
consideration is smaller (<1000 capsules). Uncurated gene sets
can be analyzed using MethylSPWNet, while curated gene sets are
best suited to MethylCapsNet, e.g., regions of the genome
fragmented by consistent windows or larger DNAm CpG modules
that have been uncovered through methods such as WGCNA. In
addition, the adoption of capsule-inspired approaches that
explicitly form networks via their routing mechanisms presents a
future area of research89. It is also assumed that MethylCapsNet
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capsules that are more closely embedded are interacting, but it is
not entirely clear the nature of these interactions without
incorporating gene expression data, methylated quantitative trait
loci analyses, and other pertinent omics modalities (e.g., ATAC-seq,
Hi-C). In realistic analysis settings, performing a MethylCapsNet
analysis on both marker genes and genes not associated with the
disease of interest may yield genes that may interact through
means that are not disease specific. To rank interactions for
disease relevance, other potential sources of confounding (e.g.,
cell composition) should be controlled for and incorporation of
expression data may provide the means to establish causal
disease-association pathways.
While inspired by capsule networks, we also emphasize that

these methods are not analogous to capsule networks featured in
computer vision tasks. While the new capsule-based approaches
were as accurate as fully connected approaches, this was done so
under the constraint of sparse connections, where such specifica-
tion points to the validity of imposing these constraints. Given the
nature of the problem (classification among dozens of histological
subtypes), intermediate embeddings may reflect a more linearly
separable subspace to the subtypes of origin. Such a subspace
may require additional exploration/penalization to avoid potential
biases pertaining to the minimal redundant set of predictors to
produce a subspace optimal for prediction. The application of
such methods does not preclude the potential for selection of
genes due to technical reasons such as noise, batch effects, and
weight initializations, which are common to many domains of
application of neural networks. We attempted to account for such
biases through preprocessing methods on the data such as
functional normalization and note that strict interpretation of
threshold cutoffs for methods devised for differential gene
expression may not be applicable. Thus, relaxation of the scope
of features’ input into a pathway and other enrichment analyses
may potentially reduce bias so as long as limitations are
appropriately stated. Additionally, differences in tissue preparation
(frozen, permanent) were not accounted for, and however, given
the high concordance between these preparation methods, we
felt that such adjustment was not necessary100.
While DNAm deep-learning methods with built-in interpret-

ability do not yet exist, we hope these methods, though
constrained by potential limitations in design choice, may spur
further research into more interpretable capsule methods. Here,
there is also an opportunity to further apply concepts from
topological data analysis (TDA), such as Mapper101–105, to distill
the key functional relationships from high-dimensional,
complex data.
Existing classification frameworks currently used in the clinical

setting for aiding brain cancer diagnosis only utilize a small subset
of the total possible set of CpGs that can be measured. Current
modeling approaches can be difficult to trust or use to study new
network biology until they can consider a larger, more complete
set of predictors. However, it is also important to note that doing
so would introduce additional noise into the modeling approach,
but the incorporation of prior biological knowledge can poten-
tially help reduce noise while improving the detection of
biologically relevant signals. We note that underperformance
could suggest selecting capsules that may not be optimally
aligned to the target task/dataset. By demonstrating the
organization of CpGs into their respective genomic contexts, we
present further opportunity to reduce the feature space and
disentangle correlation and collinearity between CpG sites to
create a new class of transparent, clinically tractable models. For
instance, future classifiers should include brain cell-type classifica-
tion using DNAm data and incorporate it as covariates in the
prediction model, yet brain cell-type differentially methylated
regions for deconvolution by DNAm patterns are not well-
established. The opportunity space of epigenetics research
questions is ample and poised to grow substantially as the field

moves to expand reference-based approaches to cell-type
deconvolution, include tandem assessments of other cytosine
modifications (hydroxymethylcytosine), and apply DNA methyla-
tion age clocks to questions of biological aging. Despite having
demonstrated the promising downstream analyses that users may
readily adopt through our framework, we acknowledge that there
is ample opportunity to develop related methods and their use
cases further.
In this work, we have demonstrated the feasibility and utility of

DNAm-based capsules for performing disease classification and
potentially determining dysregulated genes for these diseases. We
found that DNA methylation capsule methods can predict brain
cancer subtypes with high accuracy and present convenient
means for organizing data over traditional techniques for studying
DNA methylation data. As such, we advocate for the organization
of well-defined DNAm capsules as a means to improve the
accuracy, transparency, and broad applicability of DNAm deep-
learning models. Future deep-learning prognostic models that
reimagine the formation and incorporation of DNA methylation
capsules, paired with cell-type inference, gene expression, and/or
corroborating chromatin capture, may serve as grounds for the
derivation of unknown heterogeneity.

METHODS
Overview of framework
The MethylCapsNet methodology presents an extension of the
MethylNet framework20 and is implemented as a command-line
interface that allows the user to group CpGs into capsules and
then dynamically route the capsules to make a prediction and
interpret the results. While this approach draws inspiration from
capsule networks featured in computer vision tasks, MethylCaps-
Net is not explicitly a capsule network, as defined in previous
works in this domain.
MethylCapsNet utilizes separate MLPs for every set of CpGs (one

set per context) to derive context-specific embeddings (separate
context embeddings per each individual), and dynamic routing
processes force information from child capsules into disease/
categorical outcomes (Fig. 1A). The information is hierarchical
because each child capsule may only align with one parent
capsule. Once the capsule-inspired network is fit, graph structures
that describe the relationships between each individual’s contexts
can be derived by thresholding the correlation between pairwise
n-dimensional context embeddings. Highly conserved biological
networks can be derived by thresholding the number of
individuals that share the same edge between the contexts. The
simplest genomic context considered are genes that the CpGs
annotate to. Other capsules can be defined by, for instance,
genomic region or pathway/biological process annotation.
MethylSPWNet is a specialized neural network architecture that
routes beta values from the CpGs in each context into a single
node representing the context (Fig. 1B). Each CpG is given a
weight based on the importance of its contribution, both on the
gene level and toward the classification task as a whole. This
information passes through additional neural network layers that
dynamically relate latent sets of predictors to outcomes of interest,
whether they be prognostic or diagnostic53,106. Much like Group
LASSO approaches, group L1 penalization can be utilized on the
CpG weights routed to each gene to select relevant genes of
interest.
The software implementation (Fig. 6) comprises modules

pertaining to prediction and interpretation tasks, which take into
account the relationships and embeddings derived through the
training process.
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Data preparation
DNAm data from CNS tumors (n= 3897) were accessed from the
GEO archive (GSE109381), preprocessed using PyMethylProcess21,
and divided into 70%/10%/20% training, validation, and testing
sets (MethylationArray objects) via PyMethylProcess. The 200,000
most variable CpG loci across the training samples were retained
for analysis. Sets of CpGs were tracked to genes, which were then
selected to form capsules. The original set of 200,000 CpGs was
used as features for the MethylNet approach, the complete set of
intersecting gene capsules with more than five associated CpGs
was used for the MethylSPWNet (n= 10,341; 139,028 CpGs), and
Group LASSO approaches, and a reduced set of capsules (n= 55),
was utilized for MethylCapsNet after manual curation and a
hyperparameter search (see “Selection of capsules for Methyl-
CapsNet and MethylSPWNet”).

Description of potential downstream analyses
After fitting a MethylSPWNet model (and MethylCapsNet), the user
may further interrogate the gene-level embeddings, depending
on the research question being addressed. The user may explore
how each gene relates to each outcome or how they relate to one
another, the details of which have been included in an informative
flow diagram (Fig. 7) (separate text describing information that
can be extracted after fitting MethylCapsNet can be found in the
section “Description of capsule-inspired neural network”).
Differentially embedded genes (the extent to which gene-level

embeddings vary between subtypes vs. normal) from gene-level
values derived by the neural network embeddings in each of GBM,

LGG, and MB, were identified using the limma107 package. This
package compares tumor to nontumor control tissue through
least-squares regression and empirical Bayes moderated F-tests,
yielding FDR-adjusted p-values and log-odds ratios for the degree
of differential embedding. We profiled functionally enriched
pathways using the g:Profiler package108 after selection of genes
below an FDR-adjusted significance threshold and visualized the
results (relating pathways by the number of shared genes,
clustering into higher-order pathways via Markov clustering)
using EnrichmentMap, as part of the Cytoscape network
visualization framework109,110.
The pairwise correlation between MethylSPWNet-derived gene

methylation was calculated using Pearson’s correlation coefficient.
Weighted adjacency matrices were calculated from the pairwise
correlation matrices for each of the subtypes using the power
adjacency function, which takes the comethylation to a power
specified separately for each subtype. To further cluster the genes,
the weighted adjacency is transformed into a topological overlap
matrix (TOM), defined by the extent to which two genes share a
third common gene. Finally, hierarchical clustering is applied to
derive the final modules of genes. Finally, to relate each module
with the disease subtype via the aforementioned least squares
and empirical Bayes differential analysis methods, we calculated
eigengenes (1st principal component) for the genes in each
module to further reduce the design matrix (samples by
modules)107. A large number of genes (on the order of five
thousand) for such a summary gene network plot may make
plotting the individual genes cumbersome and hard to under-
stand, so we utilized Mapper101,103,104, a tool from Topological
Data Analysis, to further summarize and portray the relationships
between the genes in the network summary plot.

CpG island/gene context analysis
Using the MethylSPWNet, each CpG is assigned a weight that
relates the CpG to its associated gene or genomic context. These
CpG weights are learned by the neural network and can be used
to rank genes based on their relative importance (rank assigned
by maximum absolute CpG weight), an alternative measurement
to the modularity analysis. Inspection of the weights of CpGs
within each gene can provide insight into sites and contexts that
are important for predicting brain cancer subtypes. Further,
investigation of weights spatially across the genome may give
rise to important patterns and motifs that could warrant future
investigation. In the supplementary material, we first considered
the contexts mentioned above independently and did not
consider the joint impact of context (e.g., did not associate with
island-promoter regions, which are generally considered to be
regions more causally related to changes in their expression). We
then considered sites that were associated with island promoter
regions (including shore and shelf context, more causally
associated with gene expression) and separately compared the
overlap of the CpGs correspondent to top positive and negative
weights to the CpGs that were unassociated with this context
(open sea and not TSS200/1500). We separately considered CpGs
within the promoter regions. Finally, we considered intragenic
CpGs and whether or not their corresponding gene’s promoter
was methylated or unmethylated (as operationalized by calculat-
ing a beta-value methylation cutoff via local minima in the
distribution of beta-values. The beta-value distribution, bimodally
distributed, reflects the distribution of proportion of methylated
alleles across a bulk mixture of cells for individual CpG sites. This
distribution across CpG sites is typically estimated per individual
(s). Beta values can take on values between 0 and 1, but
particularly concentrate closer to 0 or 1 to reflect that a site is
either “methylated” or “unmethylated”. The intermediate propor-
tions reflect scenarios from which around half of the cells of the
mixture are methylated at that site, which is uncommon, and used
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Fig. 6 Description of framework. a User selects capsules to group
sets of CpGs from their own supplied list or a prespecified
annotation set. b User selects the modeling approach, MethylCaps-
Net, MethylSPWNet, Group LASSO. c Hyperparameter search con-
ducted to reveal ideal model specification. d Final models are fit,
and capsules are interrogated for relationships with one another,
relationships to the outcome, and highly weighted CpGs; yellow
indicates an important capsule; MethylCapsNet relates the capsule to
each other per individual; MethylSPWNet locates important CpGs
within a capsule and contextualizes its location; input data into the
algorithm are colored red.
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to as the threshold to denote whether a site is methylated. Any
CpG with a beta value above the threshold was methylated. CpG
methylation was averaged across each promoter and subject to
the threshold to determine methylation status). We calculated
odds ratios for enrichment/depletion in these contexts using
Fisher’s exact tests. Without matching gene expression informa-
tion, we could not make any causal claims/inferences about how
these contexts modify gene expression to bring about these
disease states.

Description of capsule-inspired neural network
The capsule-inspired network featured in this work operates by
first finding representations of the given CpG sets as denoted by
the primary capsule formation. The features, CpGs, of the CpG sets
are fed into parallel implementations of a multi-layer perceptron,
fj, where the output dimensions of each of the neural networks are
the same. Thus, the dimensionality of the primary capsules reflects
the number of output neurons, a latent representation of each
CpG set, times the number of capsules, per individual. The

Fig. 7 Flow diagram for possible downstream applications of MethylSPWNet. A User fits MethylSPWNet model to predict brain cancer
subtypes; B gene embedding matrix (samples by genes; in this example GBM vs Control) is extracted from the model from the test samples;
the user decides whether they want to (C–E) associate gene-level embeddings with disease outcome, or (F–H) relate genes to one another to
imply functional relationships; C the user opts for pathways analysis; Empirical Bayes method is used to identify genes with differential
embeddings between GBM and controls using an empirical Bayes moderated linear model; D significant genes may be passed into g:Profiler
or limma’s internal functions camera, goana, and kegga, for pathways enrichment over GO, KEGG, Reactome, etc. databases; E pathways are
summarized and visualized using EnrichmentMap, accessed via RCy3; F the user opts for gene correlation analysis (WGCNA), first calculating
the correlation between genes, then calculating topological overlap over correlation transformed by power, hierarchical clustering is applied
to deduce modules; G gene–gene networks and module membership is visualized using Mapper; H modules related to GBM are extracted
using the Empirical Bayes method by comparing projections into the first eigengene (samples by module matrix) for each module for GBM vs
controls.
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mathematical formulation of this transformation is presented
below:

zgenej
��! ¼ fj xj

!� �

(1)

For a single individual, the capsules, represented by row
vectors, are stacked to form a capsule matrix:

Z⃡ ¼
zgene1
���!
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An affine transformation, W⃡ , a set of learnable parameters that
seek to rotate, scale, and shift the data, transforms the primary
capsules to encode information pertaining to the interactions
between capsules:

Z⃡� ¼ W⃡ Z⃡ (3)

Each primary child capsule’s information is then dynamically
routed to parent hidden or output capsules:
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where:

yclass j
���! ¼ sq

X

i
Cgene i; class jzgene i

���!� �

(5)

Dynamic routing aims to force the information encoded into
each child to align with one parent capsule, thus utilized to
calculate C⃡ ¼ fCijg, a bipartite network relating the child-parent-
capsule. A vector of the same length represents each child as the
output of the parent capsule. Analogous to the nonlinear
transformation of the sum of the information output from the
previous layer of neurons for traditional neural networks, for each
parent capsule, the child-capsule values are summed, and then a

nonlinear transform called a squash function, sq ~xð Þ ¼ ~xk k2
1þ ~xk k2

~x
~xk k, is

applied to effectively zero-out, or squash, child capsules that do
not agree with parent capsules.
Each child’s contributions to a parent are weighted, but two

constraints are imposed: first, the weights from each child to its
parents must sum to 1. Second, a reward for the alignment of a
child to exactly one parent is a dynamic routing by agreement
mechanism. An iterative process updates the weights between the
child and parent by adding their dot product. The update
mechanism for calculating C⃡ is recapitulated below. After
initializing Ci

!¼ softmax βi
!¼~0

� �

for r 2 f1; 2; 3; ¼ g iterations:

Ci
!¼ softmax βi

!� �

(6)

Yj
!¼ sq

X
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(7)

βij ¼ βij þ Yclass j
���! � zgene i���! (8)

This formula is simplified from its original derivation and utilizes
a few notational shortcuts.
Applying this operation for r iterations per batch per training

epoch effectively prunes the other connections between the child
and its parents as it converges on a single parent from which to

send its information. Each output capsule per individual, Yj
!
, is

represented by a vector in some n-dimensional space. The output

capsule with the highest L2 norm, Yj
!�

�

�

�

�

�

2
, is selected as the

predicted class, and a margin loss is applied to penalize the model
when it fails to either concretely have a very high (mþ ¼ 0:9) or

very low probability (m� ¼ 0:1) of prediction.
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The Kronecker’s delta δyi ;j is equal to one when the outcome for
individual i is equal to the jth class, thereby activating the left-
hand margin loss that penalizes the model if the probability is
below mþ ¼ 0:9. On the right-hand of the equation, δyi ;j is equal
to zero when the outcome for individual i is not equal to the jth
class, thereby activating the right-hand margin loss that penalizes
the model if the probability is above m� ¼ 0:1.
The model is also penalized based on how much the original

methylation array could be constructed from the true class’s

output capsule via a decoder neural network X̂ � pϕ X
!jYj!

� �

:

Lreconstruct / X̂ � X
!� �2

(10)

Of the most interest to a biologist may be the primary capsule
embeddings per individual, Z⃡�, which demonstrate interactions
between these biological hypotheses and how the outcome of
interest is separable within a certain genomic context, and the
weights between the primary and output capsules, C⃡, a bipartite
graph demonstrates how these genomic regions are related
hierarchically and have implications for parent processes. The
coordinated response of capsules can also be derived through a
bipartite projection of C⃡ into a unipartite network of capsules.
Second, of importance are the concatenation of the primary
capsules, which demonstrate overall class separation, and the
decoded output. Tweaking the embeddings or L2 norm of the
output capsules and decoding can potentially effectively generate
methylation data conditionally on outcomes of interest and
interpolate between purified states, though this aspect was
unexplored due to prohibitive dimensionality.

Description of MethylSPWNet
MethylSPWNet is the deep-learning analog of a Group LASSO
Regression model. The beta values for the CpGs for each gene, xj

!,
are transformed into a single value, zgene j , through the multi-
plication of a set of gene-specific CpG weight matrices, wj

!. These
weights are updated throughout the training process to minimize
the divergence between observed and expected outcomes. The
magnitude of the weights dictates how much information from
each CpG should be considered. The final gene-level summary
value is given by

zgene j ¼ σ wj
!� xj!
� �

(11)

The gene-level summary values are concatenated to form an
array of gene-level summaries (~z 2 Rn):

z!¼ zgene 1zgene 2zgene 3 ¼ zgene n
� 	

(12)

The final prediction for the network can be obtained using the
following transformation via an MLP, f:

ŷ ¼ f ~zð Þ (13)

p̂ ¼ softmax ŷð Þ (14)

In the classification case, this predicted outcome is compared to
the expected outcome via

LCE ¼
�P

i

P

c yi;clog cpi;c
� �

N
(15)

We applied group L1 regularization to these weights to cause
certain genes to drop out, returning genes important for the
prediction of the cancer subtypes. The final LASSO penalty is given
by

LL1 ¼
X
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where dj is the number of CpGs assigned to that gene. An
intermediate layer of the neural network, z!, stores gene-level
summaries of DNAm information, and wgene j

���! contains the
importance of each CpG for a particular gene.
Here, we contrast this summary measure, zgene j ¼ σ wj

!� xj!
� �

to a
more traditional summary measure, such as the median or mean

methylation (mean displayed on the right): βgene j ¼
P

k
βjk

dj
.

Assuming the mean as our measurement, for simplification, it
can be seen that each CpG is given equal weight 1

dj
, while for

MethylSPWNet, each CpG is given weight wjk , which is learnable
and reflective of the relative contribution of the given methylation
beta value to the aggregate measure. A comparison between zgenej
and βgenej can be found in the supplementary materials.

Hyperparameter scans
MethylCapsNet includes the use of a hyperparameter optimization
scheme, accessible through the methylcaps-hypscan module.
Currently offered by the package is the availability to scan a
number of hyperparameters, including the number of training
epochs, length of the genomic region, the minimum number of
CpGs to constitute a capsule, weighting schemes for reconstruc-
tion loss and survival loss, and learning rate, in addition to other
focused hyperparameters. Additionally, the search for MethylNet
model architecture, randomized neural network topologies, was
replaced by a framework that searches for the ideal number of
neurons per neural network layer, conditional upon the choice of
the number of layers. There are three search strategies for
optimization, including randomized searches and Bayesian
optimization techniques. This scheme differs from MethylNet, as
both the neural network topology and a set of hyperparameters
can be optimized through the application of successive Gaussian
processes to update some prior of losses over the set of
hyperparameters. However, the results presented in this paper
utilized the randomized search design. The jobs can be launched
in parallel and scaled to meet the demands of a larger compute
cluster.

Capsule generation
Capsules specify the groupings of CpGs of the MethylationArray
object. Capsule selection has been incorporated into the
hyperparameter_scan and the methylcaps-model subcommands.
Application Programming Interface (API) access to capsule
selection and the building may be accessed through the
build_capsules script. As mentioned in the “Results” section,
prespecified capsules include the following Illumina methylation
array annotations—UCSC_RefGene_Name, UCSC_RefGene_Acces-
sion, UCSC_RefGene_Group, UCSC_CpG_Islands_Name, Relation_-
to_UCSC_CpG_Island, Phantom, DMR, Enhancer, HMM_Island,
Regulatory_Feature_Name, Regulatory_Feature_Group, and DHS.
Additionally, the following GSEA gene sets may be queried: C5.BP,
C6, C1, H, C3.MIR, C2.CGP, C4.CM, C5.CC, C3.TFT, C5.MF, C7, C2.CP,
and C4.CGN. Users can also specify their own capsules through the
presentation of a pickled dictionary containing a DataFrame that
maps each CpG to a context name of choice. Capsule generation
may also be accomplished by breaking up the entire hg19
genome into overlapping windows of fixed width57 (genomic_-
binned selection). We recommend the utilization of the Circos
tool111 for visualization of derived capsule relationships using the
genomic_binned option.

Selection of capsules for MethylCapsNet and MethylSPWNet
For the training of MethylSPWNet, we utilized all genes that
overlapped with the 200,000 most variable CpGs across the CNS
tumors. For MethylCapsNet, we could not utilize the complete set
of genes due to the number of free parameters, a gene list of 650

genes was manually curated for MethylCapsNet that included
genes related to WNT, SHH, DKK1, beta-catenin, SFRP, and NPR3,
among others. This list was reduced to 55 genes via recognition of
genes by domain experts and thresholding of the minimum
number of CpGs. As a further description, for both approaches,
hyperparameter scans were utilized for pruning genes that did not
contain a minimum number of CpGs (this threshold was varied via
the hyperparameter scan), resulting in a lower number of genes
than originally specified (n= 10,341). In future iterations of the
capsule-inspired network-based approach, gene-selection con-
straints will be lifted via reduction of free parameters and the
adoption of explicit network building approaches.

Comethylation embedding modules
MethylSPWNet-derived gene-level methylation summaries/embed-
dings were correlated to each other and within their own set of
top genes. To identify modules of gene comethylation patterns
and understand how they relate to the underlying pathways, we
selected the 2000 most variably methylated genes across the 38
brain cancer subtypes as defined by gene median methylation
and SPW-derived gene-level methylation. Louvain modularity was
performed on a k-nearest neighbor graph of MethylSPWNet gene-
level embeddings to establish preliminary coembedding modules
and then tested for enrichment after combining the two largest
modules. The genes that were identified in the largest two
modules were selected for enrichment analysis. Results for the
preliminary module analysis may be found in the supplementary
material, section “Preliminary Pathways and Module Analysis”. For
MethylSPWNet, the final gene comethylation/embedding analysis
was carried out on a subtype-specific basis on all genes, done so
through the use of WGCNA.
For MethylCapsNet, capsule-level embeddings were averaged

across all individuals to form overall embeddings. Though just as
relevant, these approaches can be extended to capsule-level
embeddings on the individual level or aggregated across mean-
ingful subgroups. To derive the final measures of coordinated
response between capsules, we averaged the routing matrix
coefficients across the individuals to form a weighted bipartite
graph and calculated a bipartite projection of the graph to form a
unipartite graph of capsules. We utilized the Louvain modularity
algorithm to discover hubs in this network and performed
enrichment analyses on the pathway level using enrichr112 to
describe these hubs.

Random Forest approaches in comparison
As a comparison to MethylSPWNet and MethylCapsNet, we adapted
the Random Forest scheme featured in a DNAm machine-learning
classification study. We selected 10 k CpGs by first fitting 100
random forest models, each themselves fit on 10 k randomly
selected CpGs. Shapley Additive Feature Explanations (SHAP)113,
was employed to determine the top CpGs from each random
forest run. The 10 k CpGs with the highest average rank across the
100 random forest models were selected for the final RF model.
We note that we did not have access to the original set of 10 k
CpGs featured in the previous classifier development study. The
previous study also utilized probability calibration methods to
boost the model sensitivity and specificity, which we avoided to
ensure a proper comparison between methods.

Analysis of CpG weights derived from MethylSPWNet
MethylSPWNet derives CpG-specific weights, w!, that relates each
CpG to its respective gene. We rank-ordered, reverse rank-ordered,
and absolute-value reverse rank-ordered these lists to yield CpGs
that were important to differentiate the tumor types. We subset
the first 1000 CpGs, marked which genes they corresponded to,
and tested for enrichment using enrichr in our preliminary weight
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analysis. The results for the preliminary weight analysis may be
found in the supplementary material, section “Preliminary Path-
ways and Module Analysis”. Finally, weights were also rank-
ordered and reverse-rank-ordered to yield the set of top negative
and positive weights, respectively; the CpGs correspondent to the
top number of CpGs (selected to highlight tendencies of
enrichment and depletion) were related to the various islands
and gene context.

Method to cluster gene-level brain cancer embeddings by
samples
Recall that embeddings for individuals for MethylSPWNet were
given in the following form (the design matrix is of dimensionality
samples by genes):

z!¼ zgene 1zgene 2zgene 3:::zgene n
� 	

(17)

For MethylNet, the embeddings are derived using the encoder:

~z ¼ f ~xð Þ (18)

Embeddings for individuals using the MethylCapsNet approach
(of dimensionality samples by genes by latent dimensions) can be
obtained by either averaging or concatenating (an aggregation, or
AGG operator) the gene-level embeddings:

z⃡ ¼ AGG

zgene 1
���!

..

.

zgene n
���!

2

6

6

4

3

7

7

5

0

B

B

@

1

C

C

A

(19)

Stacking these vectors for individuals would yield a design
matrix that can be clustered using methods such as hierarchical
clustering. We implemented hierarchical clustering using scikit-
learn (>0.22) and found 14 clusters to compare against true labels
of cell-of-origin, histological subtype, and histological and
molecular subtypes using the v-measure statistic and cluster
separation using the Silhouette coefficient.

Web application
We have developed a web application for the submission and
investigation of MethylCapsNet outputs. The web application
features three modules. The first is the network-projection model,
where capsules are related to each other across subtypes, and
network configurations can be changed by having some users
tweak the relationships between the capsules and conservation.
The second module displays routing information and the third
module displays embedding information. Usage is detailed in
the wiki.

Analysis hardware and software
The analyses run for this work were optimized utilizing K80 GPUs
at the Dartmouth Research Computing Cluster. The algorithms
were designed using Python 3.7, PyTorch version 1.1, and
CUDA 9.0.

Dataset preprocessing
We acquired data from GEO accession GSE109381 preprocessed
data using PyMethylProcess and the subselected 200 K of the most
hypervariable CpGs (to focus on CpGs that may better differ-
entiate CNS tumor subtypes) after functional normalization was
applied to the data. SNPs and nonautosomal (sex chromosome)
probes were omitted. Preprocessing steps have been detailed in
using the pipeline of PyMethylProcess21.

DATA AVAILABILITY
Data used in this study were acquired from GEO accessions GSE109381, GSE84207,
and GSE75067. Test data are available in our GitHub repository.

CODE AVAILABILITY
The software (MethylCapsNet, MethylSPWNet) is open source and can be found on
GitHub at https://github.com/Christensen-Lab-Dartmouth/MethylCapsNet, on PyPI
under the tag methylcapsnet, and on Docker at joshualevy44/methylcapsnet. While
new features may be developed for the MethylCapsNet framework, community
contributions are welcome in the form of GitHub pull requests and issues. A test
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